

Generators, Light Towers, Compressors, and Heaters

Used Compressors Riverside - Air compressors are popular equipment that stores pressurized air by transferring power into potential energy. These units use electric, diesel or gas motors to force air into a storing tank to increase the pressure. Once the tank reaches its' upper limit, the air compressor turns off, as the compressed air is held into the tank until needed. There are many applications that require compressed air. Once the kinetic energy in the air tank is used up, the tank undergoes depressurization. Once the lower limit is reached, the air compressor turns on again to start the pressurization process again. Positive Displacement Air Compressors There are a variety of air compression methods. There are two categories: roto-dynamic or positive-displacement. The air is forced into a chamber with decreased volume in the positive-displacement model and this is how the air becomes compressed. After maximum pressure is attained, a valve or port opens and the air is discharged into the outlet system from the compression chamber. Vane Compressors, Rotary Screw Compressors, and Piston-Type are popular kinds of positivedisplacement compressors. Dynamic Displacement Air Compressors Axial compressors and centrifugal air compressors fall under the dynamic displacement air compressors. Pressure energy is transformed via discharged kinetic energy with a rotating component. A spinning impeller generates centrifugal force, accelerating and decelerating contained air, creating pressurization. Air compressors generate heat and require a method for heat disposal; usually with some type of air cooling or water. Atmospheric changes are also taken into consideration during compressor cooling. Inlet temperature, the area of application, the power available from the compressor and the ambient temperature are all factors the equipment must take into consideration. Air Compressor Applications There are many uses for air compressors and they are used frequently in a variety of industries. Air compressors are used to provide pneumatic power to equipment such as air tools and jackhammers, to fill tires with air, to supply clean air with moderate pressure to divers and much more. Moderate pressurized air is used in large capacities for a variety of industrial jobs. Types of Air Compressors Most air compressors are the reciprocating piston style, the rotary vane model or the rotary screw kind. These air compressor models are utilized for portable and smaller applications. Air Compressor Pumps Oil-injected and oil-less are two specific types of air-compressor pumps. The oil-free model depends on technical items; however, it costs more and lasts less than oil-lubed models. The system that functions without oil has been recognized with delivering better quality. Power Sources There are a variety of power sources that can be used alongside air compressors. The most popular models are diesel-powered, gas and electric air compressors. Additional models are available on the market that have been built to use hydraulic ports or engines that are commonly utilized by mobile units and rely on power-take-off. Isolated work sites with limited electricity commonly use diesel and gas-powered machines. They need adequate ventilation for their gas exhaust and are quite noisy. Indoor applications including warehouses, production facilities, garages and workshops that offer easy access to electricity typically rely on electric-powered air compressors. Rotary-Screw Compressor One of the most sought after compressors is the rotary-screw compressor. A rotary-type, positive-displacement mechanism is what this type of gas compressor relies on. These models are often used to replace piston compressors in vast industrial applications where large volumes of high-pressure air are required. Some common tools that rely on air compressors include impact wrenches and high-power air tools. Gas compression of a rotary-screw model features a sweeping, continuous motion, allowing minimal pulsation which is common in piston model compressors and may cause a less desirable flow surge. Compressors use rotors to create gas compression in the rotary-screw compressor. Timing gears come into play with dry-running rotary-screw compressor models. These items ensure the perfect alignment of the male and female rotors. Lubricating oil fills the space between the rotors in oil flooded rotary-screw models. This serves as a hydraulic seal while simultaneously transferring mechanical energy between the rotors. Beginning at the suction location, as the screws rotate, gas traverses

through the threads, causing the gas to pass through the compressor and leave via the screws ends. Success and overall effectiveness rely on specific clearances being achieved between the sealing chamber of the compression cavities, the rotors and the helical rotors. Rotation at high speeds minimizes the ratio of a leaky flow rate versus an effective flow rate. Many applications including food processing plants, automated manufacturing facilities and other industrial job sites rely on rotary-screw compressors. Other than fixed models, there are mobile units in tow behind trailers that run on diesel engines. Often referred to as "construction compressors," portable compression systems are necessary for riveting tools, road construction crews, sandblasting applications, pneumatic pumps and numerous other industrial paint systems. Scroll Compressor This type of popular air compressor specializes in compressing refrigerant or air. It is popular with supercharging vehicles, in vacuum pumps and commonly used in air-conditioning. A variety of air conditioning systems, residential heat pumps and a variety of automotive air conditioner utilize a scroll compressor in place of wobble-plate, reciprocating and traditional rotary compressors. This machine has dual inter-leaving scrolls that complete the pumping, compressing and pressurizing fluids such as liquids and gases. Usually, one of the scrolls is fixed, while the second scroll is capable of orbiting with zero rotation. This motion traps and pumps the fluid between the scrolls. The compression movement occurs when the scrolls co-rotate with their rotation centers offset to create a motion akin to orbiting. The Archimedean spiral is found in flexible tubing variations. It functions similarly to a tube of toothpaste and resembles a peristaltic pump. There is a lubricant on the casings to stop exterior pump abrasion. The lubricant additionally helps to dispel heat. With zero moving items coming into contact with the fluid, the peristaltic pump is an inexpensive solution. With zero valves, seals or glands, this equipment stays simple to operate in maintenance terms. Compared to additional pump items, this tube or hose piece is fairly low cost.